arxiv:0904.3438v1 [astro-ph.IM] 22 Apr 2009

Mon. Not. R. Astron. Sod00, 000-000 (0000) Printed 22 April 2009 (MNTEX style file v2.2)

Bayesian photometric redshiftswith empirical training sets

Christian Wolf

Department of Astrophysics, Denys Wikinson Building, University of Oxford, Keble Road, Oxford, OX1 3RH, UK (email: cwolf@astro.ox.ac.uk).

accepted

1 INTRODUCTION

ABSTRACT

We combine in a single framework the two complementary benefiy2-template fits and
empirical training sets used e.g. in neural ngtsis more reliable when its probability density
functions (PDFs) are inspected for multiple peaks, whilgieital training is more accurate
when calibration and priors of query data and training setmaNe present g2-empirical
method that derives PDFs from empirical models as a subcfdssnel regression methods,
and apply it to the SDSS DR5 sample»f75, 000 QSOs, which is full of ambiguities. Ob-
jects with single-peak PDFs show 1% outliers, rms redshift errors 0.05 and vanishing
redshift bias. Atz > 2.5, these figures argx better. Outliers result purely from the discrete
nature and limited size of the model, and rms errors are dat@irby the instrinsic variety of
object colours. PDFs classed as ambiguous provide acquaiabilities for alternative solu-
tions and thus weights for using both solutions and avoideedless outliers. E.g., the PDFs
predict 78.0% of the stronger peaks to be correct, whicluesfwr 77.9% of them. Redshift in-
completeness is common in faint spectroscopic surveysuand into a massive undetectable
outlier risk above other performance limitations, but wa caantify residual outlier risks
stemming from size and completeness of the model. We prapoateched y2-error scale for
noisy data and show that it produces correct error estinaatg sedshift distributions accurate
within Poisson errors. Our method can easily be appliedttoédarge galaxy surveys, which
will benefit from the reliability in ambiguity detection amédsidual risk quantification.
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estimated. If the training set is truly random, it will alsmopide
the correct priors to the statistical redshift estimatilfrit is not,

Photometric redshifts are an attempt to attribute redshifies to a weights approach as suggested by Lima et al. (2008) hefps to
locations in colour space occupied by objects for which waaio the priors. As a result, smaller or pioneering photo-z sys\eave

have spectroscopic redshifts. Statistically more usefithé aim no choice but to use template-based models, while largeegsirv
to attribute expected redshift distribution$z) to these locations, ~ with small Poisson errors on any of their results wish to caint
which are correct in a frequentist interpretation. Howepéoto-z their systematics in the best possible ways and prefer tipérieal
practitioners are often limited to determine a Bayesiarbabdlity model, that minimises systematics in the calibration amnotgr

distributionp(z), which resembles the state of our knowledge, but
differs from the frequentist:(z) by manifestations of ignorance
that have to be incorporated to safeguard against knownawr

in the data and in the redshift model.

After obtaining the data and choosing the model, there re-
mains the choice of estimation code to relate the two. Ctlgren
the two perhaps most advocated categoriesy@renethods (e.g.
Benitez (2000); or Wolf et all (1999) for galaxies and QSQsg) a

Photo-z's are obtained using a model expressing the expecte artificial neural nets (ANNs, e.g Collister & Lahav 2004).rEa

colour as a function of redshift and a variation of possibiin- lier work has included global or piece-wise polynomial figi
sic colour-affecting parameters. These models come in tstndt between colours and redshift (Koo 1985; Connolly et al. 3995
flavours with different advantages: (i) template-basedetwdllow Later the empirical fitting approach has developed into éere-
the observer to interpret data in empirically unexploredtty by gression methods to optimise local fits (e.g. Wang et al. 12007
extrapolating the templates in magnitude and redshift esp@i) Boris et al! 2007); these include nearest-neighbor teciaside.g.
empirical models use a subset of the observed objects wd# in  |Csabai et al. 2003) and support vector machines [(e.qg. Wkdhade
pendently known redshift, also known as training sets, vl 2005).| Budavaril (2009) articulates a unified framework.el@re

conveniently in the same calibration system as the objectset note the following general characteristics:
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(@) x? model testing assumes a parametrised model to be free
of error by definition and then uses error information on ta&ado
determine probability density functions (PDF) and henderedges
of expectation values and likely errors for the parametiérthe
model is correct and error-free, the PDF is expected to becor
whether the model originates in templates or empirical.data

(b) Kernel regression uses model realisations with any origin
and error properties to estimate a mapping from object featu
onto parameters and requires smoothing over a local reditreo
model. When the smoothing (kernel) function is a Gaussiam th
resembles the data errors, it is identicakfomodel testing.

(c) Conventional ANNs with a single-number output acting as
a parameter estimate deliver unique results. If severanpater
values are possible given the same input features, theydesdtle
for the most likely one. Errors can be estimated e.g. by retiam
the input object as a Gaussian on its error distribution afidating
the outputs into a PDF, which may deliver the possible patame
range of the main solution but might still not help with ambtges.
Probabilistic neural networks (PNNs) which output redsRiDF
vectors are currently explored.

The advantage of? model testing and all PDF-generating
techniques is that they evaluate a probability distributioross the
range of considered parameters (e.g. redshift) and hemsgdpr
a warning signal for ambiguities arising from multiple dobas
corresponding to local? minima. This includes nearest-neighbor
techniques that produce PDFs after resampling the inpecbbp
its error distribution (as shown for QSOs by Ball etlal. 2008)
contrast, conventional ANNs deliver the same unique rédebi
timate when presented with the same input on different dooas
and thus do not record the relative likelihood of alterratolu-
tions.

Traditionally, practitioners have combined templatedohs
models withx2-techniques (starting with Baum 1962) and em-
pirical training set models with ANNs or kernel regressiang(
Firth et al. 2003). However, the reliability of>-PDFs has been
plagued moderately by model deficiencies that could be oweec
by using empirical models. This has inspired the followingle-
ration of they?-technique with empirical models, which is an at-
tempt to combine their respective advantages and derives B
are statistically correct and reliable.

In this paper, we choose to look at photometric redshifts for
QSOs in order to confront us with a dataset full of ambigasifgee
Sect. 2). We generally use Gaussian kernel functions, apartrc-
ular a purex?-empirical approach, described in Sect. 3, on nearly
noise-free data. In Sect. 4 we discuss the resulting pedioceand
summarise persistent issues. We look particularly at iitcesim-
biguities and show how we can use ambiguous objects in furthe
analysis. Sect. 5 aims to give analytic explanations fordtigin
of redshift error floors, biases and outliers, and suppbasitwith
examples from the data. It also provides a framework to exealu
outlier risks in data sets beyond spectroscopic complegene

In Sect. 6 we explore the requirements for fffeerror scale
in the presence of model errors, which allow us to bring therer
estimates from the width of the PDF in line with the true réfish
errors and to predict how they deviate with different chsioéer-
ror scale. We note the potentially conflicting interestspifraising
a kernel smoothing scale, and propose an approach that wesnbi
requirements for smoothing and the statistical error stalene
choice. Finally, using data and a model with different ndese
els we demonstrate a reconstruction of a redshift disiohuhat
shows only deviations in line with Poisson uncertainties.

2 DATA

The purpose of this experiment is to combine the advantages-o
pirical training samples (calibration and priors impligitorrect)
with the advantage of thg?-method (ambiguity warning based on
a full PDF). We wish to use a data set with plenty of ambigaitie
evaluate the benefits of our method.

For most purposes, a large sample of galaxies would be most
relevant. However, the only observed galaxy samples largagh
for empirical training are provided by SDSS at relativelw Iced-
shifts z < 0.3, while strong ambiguities only appear for galax-
ies atz > 1. This is why conventional neural networks and
nearest-neighbor-techniques have produced extremelstrobd-
shift estimates of the SDSS galaxy sample with precisions, of
0.02 and virtually no outliers (Firth et &l. 2003; Csabai €t al020
Ovyaizu et al! 2008a). Optical QSO samples are, howeverofull
redshift ambiguities and thus an ideal testing ground forpau-
pose.

We opted for the SDSS QSO catalogue|by Schneider et al.
(2007), which is based on SDSS DR5 data but further cleangd an
amended. It contains 77,000 QSOs ranging in redshift from 0.08
to 5.4, and includes SDS&griz photometry as well as 2MASS
data for matching objects. A morphology flag marks extended-
unresolved sources\{ = 1 or 0), and where we include it in the
x* we assume a fiducial error ofyy = 0.2 (though this choice
makes little difference a8/ does not carry critical information).

Most objects in the catalogue have vanishing photometric er
rors on theirugriz measurements, as they are all from a sample
which was sufficiently bright for complete spectroscopiticie-
up. Exceptions are the bluer bandszin> 2.5 QSOs, which con-
tain redshifted intergalactic Lyman forest absorptiort tieaders
objects fainter and possibly undetected. We found thateoo ob-
served object colours are usually smaller than the intrinslour
variations exhibited by QSOs at fixed redshift. As a resuit,red-
shift estimation process is limited by the intrinsic prdje of the
model and not be the data quality. We are thus always in atguali
saturation domain, which is appropriate for the study oteys
atic redshift biases and ambiguities as these are not acdosled
by large statistical errors from low signal-to-noise meaments.
Fainter and noisier samples would be additionally affebtedider
confidence intervals for the observed photometry and wduld t
show wider PDFs with larger true and estimated redshiftrerro

We clean this catalogue by eliminating objects with missing
magnitudes in one or more bands and objects with untypitziiye
photometric errors, eliminating in total 1659 of the 7742feats
(~ 2%). The remaining sample of 75770 objects is split half and
half into a model sample and a data sample, using even-neghber
and odd-numbered objects, respectively. The distribuifahe two
samples is random and statistically similar in terms of nitagie,
redshift, and sky position.

3 METHOD: EMPIRICAL X2 ESTIMATION
The x2-method rests on the following conditions to work properly:

1. We compare our data to a model, which needs to represent
the possible data appropriately. Using a sample from wittén
observed data set for the model already ensures that data and
model are on a consistent calibration; this is often not teec
when external models are used, whether they are templatsiba
or empirical data from an independent project.

2. The parameter space of the model needs to be broad enough
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to cover all local minima of thg2-distribution, which represent
alternative interpretations of the data. Thus, the modeipta
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Owing to abundant ambiguities in the data, a good fraction
of PDFs contain two separate peaks. We thus test the PDF-for bi

needs to cover the whole range of parameters expected in themodality and try to deblend it instead of simply adopting itiean:

data set; ideally it is a random subset, then the statigtitais
will be correct implicitly.

3. In practice the data-model comparison is probed on aetiscr
grid, which needs to sample the data error distribution grgp

To this end we split the redshift range into two intervalssaged at
(zphot) @and obtain two local solution§zpnot), 0=)1,2. This could
already be seen as sufficient if the probability integralstaimed
in the two different peaks were comparable. But if one peak is

Thus, the model needs to be enlarged until its density avoids lot less pronounced, the initial mean estimate may lie withie

undersampling; this issue is especially critical for daitn\am-
biguous interpretation: if the technique is expected to dre s
sitive to a lower-probability secondary solution, thishie tone
driving the sampling requirements.

4. We need to know the errors of our data, so that differenees b
tween data and model are translated iptaneasures and hence
probability density functions, while the model is presurede
error-free.

The empiricaly?-method is virtually identical to the regularly
employed template-based method. The only difference isvika
use an empirical set of objects as a discrete model realisafiwve
trust that the model is a random subsample of the expected dat
then we can use the empirical objects with all the same weight

We call ¢;; the components in the vector of observables for
model object. These components could be all the fluxes in differ-
ent bands, or they could be colour indices, perhaps combvisited
a single flux value to provide a normalisation. In the case 809,
we note that their strong luminosity evolution compenstteslim-
ming with increased distance such that their magnitudeilligion
hardly depends on redshift belows 2.5; at higher redshift, virtu-
ally all the redshift constraints are in the colour signatitom the
Lyman forest. That implies that there is little prior infaation in
their overall brightness, so that colour indices contaigidzdly all
the redshift information (and explains why Ball et al. (2D0&ve
not found the magnitude priors to be useful).

The probability of a single model objec¢to give rise to the
observed dataga.ta,; Of @ given data object is then

2
=1/2Y " [(emodel,ij —Cdata,;)/75]
Pi X exXp J 5

@)

whereo; is essentially a smoothing scale for the weight of

primary mode, so that the-limit between the two intervals splits
off and diverts some of the signal from the primary mode into a
contamination of the secondary solution.

Hence, we do one more iteration, changing the splittingtpoin
to a location in the middle of the two alternative estimatas]
redo the estimates again. If the PDF is in fact bimodal, tiese
solutions represent the two modes just as well as a singlerisod
represented by the original estimate over the full range.vBen
a uni-modal PDF is over-deblended with this approach, we find
the two resulting estimates to be very close in redshift. \&&de
in favour of a bimodal PDF by requiring the redshift diffecen
between the two deblended solutions to be

1 + Zphot,2

—-1>04.
14+ Zphot,1

4

This heuristic limit was chosen after visually inspectiniga
hundred PDFs and their formal solutions. We note, that thss d
tance requirement corresponds to the width of the redstigtval
over which the PDF is integrated for the ODDS parameter in the
BPZ code [(Benitez 2000). When we consider the PDF bimodal,
then we flag the object as ambiguous, record the two solutions
and determine their relative probability fraction fromegtating
the PDF over the two ranges. This procedure is sensitive &ven
ambiguities with a-ratio smaller thar-1-in-20.

The method can be trivially generalised to other objectseas
and thus objects can simultaneously be classified on the bési
relative class probabilities and have their class-intepasiame-
ters such as redshift estimated within a single framewohks @p-
proach has been demonstrated with template-based methdus i
COMBO-17 survey (Wolf et al. 2001, 2004, 2008).

If the model is not entirely appropriate for the data, the

the association between a data object and a model object. In acould be biased away from the correct solution, which may the

Bayesian framework, we waat; to be a correct statistical error on
(Cmodel,ij — Cdata,;) SO thatp; expresses the probability of model
objects to give rise to the observation of the data object. If the
model objects populate the space only sparsely, a smoosicag
is even motivated in a Bayesian framework (see below).

The expectation value and error estimate for the redshift of
the given object follows trivially from the whole model sefter
normalising they; to ) . pi = 1:

Zpi X Zi

1+ <iphot> \/ni 1 sz(zz - <thot>)2 . (3)

We useo . as a redshift quality ranking, and as we show in
Sect. 4 objects with low ., have small true redshift errors as well.

The full PDFp.1;(2) is approximated by the combination of
all discrete instances (i.e. objects) in the model. It cdaddepre-
sented e.g. in discrete z-bins after sorting all model dbjedth
weightp; into the bins forz;. Any shortcomings of this PDF result
from the discrete nature and finite size of the model sample.

@)

(Zphot)

Oz
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appear improbable, and thus estimation mistakes might ke ma
confidently. While this is unlikely to happen with empiricabdels,

it can easily result from a choice of inappropriate or incéete
templates or priors, that lead to mismatches between tiwatidn

of data objects and model objects. Even with perfect massigel
grid steps can produce discretisation effects when thelt¢agare
treated numerically as a discrete grid by the photo-z code.

In a template approadh; is often enlarged beyond the noise
in the data object to include an estimate of essentially awkn
but plausible errors in the model usiag = 0204015, + Taata,-
This has been implemented using either constant valuesdimgv
an error floor on object colours (elg. Wolf etlal. 2001) or téate
error functions depending on wavelength and template paters
(e.g. Brammer et al. 2008). As a result, the PDF widens taidel
the correct solution even when the model is biased, and esdhe
rate of catastrophic estimation outliers. However, it $tidend to
overestimate the statistical redshift errors.

In the following section, we first implementg-error scale
that mimicks a template approach by choositjg= c4ata,; and
pretend the model to be free of errors. Although model biases
not an issue for our empirical model, the presence of modstesc
is relevant, but we reserve its rigourous treatment for.Sect
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Figure 1. Photo-z quality vs. estimated erret, (non-ambiguous objects
only); solid lines show cumulative samples with < o, 1imi¢ and dashed
lines differential samples at. = o, 1imi¢- TOp left: The outlier fraction is
generally below 1%, but it diverges fer, — 0 as the toleranc8 x o,
goes to zero as welllop right: The error estimates, are usually larger
than the true rms redshift scatt@®ottom left: The bias of the cumulative
samples remains withif:0.003. Bottom right: Only 59% of the objects are
classed as unambiguous, and choosipg< 0.1 selects most of them.

4 RESULTSUSING DATA ERRORSONLY
4.1 Overall performance: RMS, biasand outlier rates

For general discussion we use the data set withiz photometry
and the morphology bit, although we briefly comment later ani-v
ations that drop the morphology bit or include relativelyalhw

NIR photometry from 2MASS. We investigate the photo-z gyali
for a continuous sequence of sub-samples ordered by thetexpe
redshift erroro .. Here, we first eliminate all objects flagged as am-
biguous ¢ 41%) and discuss them separately in Sect. 4.3 and 5.3.
We describe the true photo-z error of each object as

Sz = Zphot — Zspec

5
1+ Zspec ( )

We determine the photo-z quality both for differential séesp
of objects with expected errors in a small interval around=
o,1imit and for cumulative samples of objects with expected errors
up to alimit,o. < o 1mit. We characterise the photo-z quality of
any sample with the following numbers:

1. Afraction of outliers withdz| > 3 X 0 1imit

2. Atypical photo-z error, i.e. the rnd& of non-outliers

3. Aphoto-z bias, i.e. the mean of non-outliers

4. The fraction of the sample with. < o 1imit @among the full
data sample, i.e. the completeness.

The results are presented in Higj. 1. Outlier rates (top &eét)
generally below 1%. The rate goes up as the tolerance goesdp z
just because the true errors remain firmly above zero (at.i; <
0.02 an object with e.gldz| = 0.06 is already an outlier). Outliers
are more common at. > 0.1 as well, but overall sufficiently rare
as to not affect the cumulative samples much.

The true redshift errors (top right) are on average coryectl
ranked by the estimated errass as shown by the monotony of

the dashed line representing the differential sample ectbyo ..
Objects with expected, < 0.05 have a truejz rms of < 0.05

as well, but ato, > 0.05 errors are overestimated. This is not a
desirable statistical property and results from ignoriragied errors

in the y2-empirical approach. We explain this in depth in Sect. 6
and propose an appropriate procedure after discussingtérpliay

of noise and smoothing scales in producing error estimates.

The photo-z bias (bottom left) is nearly zero for good-ayali
objects and always: 0.003 for cumulative samples. Globally, the
method is designed to be bias-free, but non-random subiearfgs
the ones plotted here) can always be locally biased. Théidrac
of objects peaks at. ~ 0.05, but a cumulative sample must be
relaxed too . 1imit = 0.1 to be> 50% complete (bottom right).

In summary, a good-quality subsample selectedby 0.1
contains half of all objects, shows a bias-6§.0015, adz rms of
0.04 and0.9% outliers. In the following, we investigate the depen-
dence of performance on the desired sample completeness.

4.2 Selecting subsamples by estimated photo-z quality

Many scientific applications are driven by combined requizats
for sample size and sample quality. We could thus prefer tosa
a quality cutoff for samples from diagnostic diagrams oflqya
against completeness. Thus, Eib. 2 shows the quality nisver
completeness for cumulative samples. We differentiatevéen
overall samples (top row) and high-z only samples (bottow).ro

Our default data set is shown by the solid line. The plots con-
firm that the outlier rate is small for all samples of mediwrhigh
completeness (top left panel). The rms redshift error remaélow
0.04 up to~ 50% completeness (top centre panel), and only starts
shooting up when including the worst 15% (in terms0j of the
unambiguous sample. The redshift biasig.003 for any selec-
tion of unambiguous objects (top right panel). All solidd&in the
top row end at 59% completeness as the flagged ambiguougobjec
are excluded here.

In the high-z samplez(> 2.5, bottom panels), there are fewer
ambiguities expected due to the strength of the Lyman-faies
sorption. The completeness reaches 85% as there are onlgd5%
tected ambiguities. High-z QSOs can still be confused vatirt
objects that have redder SEDs due to substantial host lagtitie
bution, but the outlier rate (mostly due to this effect) isdehan
1% at> 55% completeness. The cumulative mean redshift error is
< 0.03, and changes little even to the highest completeness. This
is simply because at high redshift almost all objects havallsim
and true errors, and completeness increases very quickiyoniy
alittle change iy jimit. Also, the bias amplitude is 102 across
most of the completeness range.

Finally, two more lines represent alternative data sets: th
long-dashed line is obtained when the morphology inforomati
is dropped from they® analysis, and the dotted line is obtained
when shallow JHK photometry from 2MASS is added. The results
change little, but generally more information means fewebigu-
ities as well as fewer outliers and smaller rms errors. In[Bige
would seem to see on the contrary an increasing outlier rate w
more information; this is, however, observed at fixed cotepless
and caused by the outlier tolerance shrinking at fixed corapéss
alongside smaller error estimates.

The main effect of added information is to help with breaking
ambiguities and thus enlarging the fraction of unambigueD§'s,

i.e. the completeness. Indeed the curves shift to highepkziet
ness with more information, as the fraction of ambiguouctsj
shrinks. The latter declines from 48% in theriz-only data via
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Figure 2. Cumulative photo-z quality in dependence of sample corapéss: including more objects of worse and worse qualityedses the overall
sample qualityTop row: Adding information on top of the.griz photometry (2MASS data, morphology; weak constraints Jomligves the curves to higher
completenesBottom row: QSO photo-z's at > 2.5 have low bias and rms values & < 0.03. The whole high-redshift sample has only 0.3% outliers
with §z > 0.15. The shallow 2MASS NIR photometry and morphological datadbhelp in this redshift domain.

41% when adding the morphology bit to only 35% after adding
shallowJH K data as well. At > 2.5 most of the redshift infor-
mation is contained in the Lyman break, and neither mormyolo
nor shallow NIR data help.

Of course, the fraction of ambiguous objects is expected to
collapse dramatically when adding data that really breaged-
eracies such as deep GALEX UV data that helps witkc 2.5
objects (see e.g. Ball etlal. 2008), and deeper NIR data thalow
help with host galaxy light and higher-redshift objectsdiud such
data, however, is contrary to the scope of this paper, wisith in-
vestigate how our method deals with ambiguities (see nexiosg).

4.3 Redshift ambiguities

Redshift ambiguities mean that objects from two or moreedéfit
redshift regimes appear in the same region of colour spamea F
given observed set of colours, two or more redshift solstiare
possible, and the most we can know beyond the alternative num
bers is their relative probability. The ambiguity can oné/troken
by adding some discriminating information such as photoyriat
additional wavebands. Meanwhile, the practical quessdmiv to
deal with those ambiguities present. Here, we considehifdis-
modalities as detected by our algorithm, and do not discigéseh
order complications.

If redshift estimates are required for individual objeatd ata-
tistical redshift distributions for samples are insuffitiethere are
only two choices: (a) ignore ambiguous objects altogettwe(b)
trust the more probable alternative in any bimodal PDF. @on-s
ple contains 15474 ambiguous objects with a mean probalalito
of 78.0%:22.0% for the more probable vs. the less probabie so
tion. If these probabilities are statistically meaningfihley ought
to represent the success rate of trusting the more problbiaa
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Figure 3. Redshift ambiguities are measured roughly statisticadigrect.
The fractionfy,;e1, of ambiguous objects, where the higher-redshift mode is
correct, agrees with the probability fractipf;,y, of this mode in the PDF.

tive. In accordance with the estimate, we find for a fact tf7a®%
of ambiguous objects have been attributed to the correminative
(12051 measured vs. 12077 predicted, well within Poissaseho
We also note, that when the known spectroscopic redshiftes u
as a prior to choose the right alternative, the error prageere the
same as those of unambiguous objects, irrespective of eheth
look at the primary or secondary peak.

Fig.[d demonstrates that our relative probabilities of aubi
ous objects are statistically meaningful even at a subtkd:laere,
we sort objects into narrow bins of the relatjwdraction for the so-
lution at higher redshiftynign, Which is desired to represent the true
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fraction of objectsfuign in this bin, for which the higher-z solution
is the correct choice. The figure shows that indégdn ~ pnign
everywhere. The relative-fractions thus tell us roughly the risk
associated with believing either one of the ambiguous iiéickh
ternatives on an object-by-object basis.

We do not know how sensitive our ambiguity detection really
is to p-ratios of less than 1-in-20, correspondingm@zn < 0.05
or pnigh 2 0.95. Among our detected ambiguities 8% have ratios
more extreme than 1-in-20, and 1% even more extreme than 1-in
50. In any case, ambiguities at very low levels exist andngithain
mostly undetected, causing catastrophic outliers at thespond-
ing small rate. If a sample of objects has an ambiguity le¥el o
1-in-50, e.g., they are likely to be classed unambiguousatbjat
their more probable redshift, and 2% of them are bound toae
catastrophic redshift outliers. If e.g. 30% of an overathpte live
in regions of colour space with such a level of ambiguitys thill
produce a 0.6% fraction of unflagged outliers in the ovemtigle.

All existing unflagged outliers in our sample are easily akpd
by low-level ambiguities remaining undetected.

If trusting risky individual redshifts is unacceptable fitre
purpose at hand, samples of ambiguous objects can at leasétle
in a statistical sense, e.g. in the form of redshift distitns(z)
(see following section).

4.4 Redshift distributions

Several astrophysical applications do not necessarilyireged-
shifts for individual objects, but can do with redshift distitions
for subsamples, e.g. in weak gravitational lensing. Sugiicgp
tions can easily make use of ambiguous objects as well, fachwh
redshift distributions are obtained reliably even thouglisions
between ambiguous alternatives are risky on an individaslsb
The most general solution for any application would be ofrseuio
represent any object by its full redshift probability fuioct (PDF)
and give up on the concept of a single redshift value. Howawver
may still continue to use single values occasionally in titerest
of data compression.

In Fig.[4 we look at the summed up distribution of redshifts:
comparing spectroscopic redshifts with photo-z's we finddyo
overall agreement. For the photo-z distribution in the ayubus
sample we have counted every object twice, once at each af-the
ternative redshifts and using the relative probabilitissaeights.
In the left panel we have represented objects simply by a peak
their estimated redshift&not). We expect that true structure on
very small scales in redshifts space will be smoothed in ghot
distributions given that photo-z errors mean a lower regmiun
observing redshift space.

However, we find some oscillations in thézpnot ), which are
not or only weakly present in the(zspec); these have been termed
redshift focussing by some practitioners. One of the reasons for fo-
cussing is a local bias arising fron{(z) priors inherent in the em-
pirical estimation. Any local maximum in(z) means that redshifts
near the peak are a-priori more probable than in the winggdib
in the wings then have their overall PDFs biased towards ¢iaé.p
Peaks are thus overpopulated and troughs(ir) are depleted.

In the right panel we have used the fu(k) functions of each
object and added them up to produce expectation values éor th
redshift distributiom(z). This is much more similar to the correct
redshift distribution and indicates that the PDFs do contery
useful information beyond the redshift expectation value.

Figure 4. Redshift distributions:(z) from spectroscopic and photometric
origins are similarLeft: Objects are represented By,1,.¢); ambiguous
objects are counted twice using the two redshifts with thelative proba-
bilities as weightsRight: Stacking object PDFs matchegz) much better.

45 Size of modd sample

Generally, the model sample is required to cover the erdinge of
colours seen in the data sample as otherwise some partslaftdére
have no appropriate model to compare with and will be inttgat
wrongly. Hence, the volume of colour space covered by theainod
is fixed, and the size of the model, i.e. the number of its discr
members, then determines its local density in colour space.

We first assume a model distribution without any ambiguities
which is thus not prone to catastrophic outliers. The loealsity
of model objects in colour space now decides how well thererro
distribution of a data point is sampled. Undersampling el lto

e missing the peak of the PDF

e alocal bias in the most likely redshift and thus redshiisilng

e larger redshift errors and

e an incorrect estimate of redshift confidence intervals

Thus, the density required for optimum performance is such
that even for well-measured objects with small photometdrior
ellipsoids, and even in sparsely populated areas of colaedshift
space, the sampling theorem is fulfilled.

We now assume a model with ambiguities and focus on an af-
fected location, where two branches of the model cross ioutol
space. Now, both branches are required to sample the estor di
bution of the given data point. Is the density of model pohigh
enough to render even the less populated branch clearlgtigée
which is now the limiting factor if the ambiguity is to be deted
reliably? In this situation, the model density required fsirgction
of the desired sensitivity to ambiguities. Protecting yalfragainst
the rarest possible high-ratio ambiguities requires ttehe most
massive model set imaginable.

Fig.[d demonstrates the situation quantitatively by répgrt
the photo-z quality for model samples of different size, rehihe
largest one is the original sample with 37885 objects andrne|-
est one has only 1/64th of that, i.e. 592 objects. Again,dpedw
reports results for the entire sample, while the bottom roly ce-
ports on high-z objects. The two lines show the photo-z tuati
two fixed levels of completeness as a functiom\ef, 4.1, the num-
ber of objects in the model sample.

The most noticable change is a steep increase of outliens whe
the model shrinks, resulting from ambiguities with extrepie
ratios becoming invisible in more sparsely sampled, disamneod-
els when the last object of a more weakly populated branch dis
appears. In contrast, changes in the bias and rms errorsgtien
non-outlying bulk of data objects are only moderate; theseda-
fined by the intrinsicly densest parts of the model, and aadast
statistics to change when the model shrinks to a near-sssites.
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Figure 5. Photo-z quality vs. size of the model sample at fixed compéte levels. The quality saturates with ever larger modepkss when the photometric
error ellipsoids become massively oversampled. The ptiegenf the good-quality bulk of objects (rms redshift esrand bias) do not change much with
model size. Oultliers (here for fixed tolerariée| > 0.2) increase with shrinking model samples whose discrete@agsults in loss of sensitivity for redshift
ambiguities, except for the high-z sample in which ambigsitire intrinsically rare.

5 UNDERSTANDING PHOTO-Z ISSUES oL’ ' T T - :.'=._;

We remind the reader that we characterise the performanuleosf -, rms 6z = 0.024
tometric redshifts by three parameters at given complsterad! of in data sample
which we want to optimise, while they keep posing challenges

1. The rms of the redshift error is supported by the intrissiat-
ter of object properties at fixed redshift; enlarging the elod
sample and getting ever more accurate photometry can not be
expected to help in this situation.

2. Sub-samples defined in colour, redshift or quality carelav
cally biased photo-z's even though the overall sample has va
ishing bias by design.

3. A small fraction of catastrophic outliers can alwayseafi®em
ambiguities that remain undetected due to large probwldit
tios between the two alternatives; the only model to guard L L L L L L L L L
against all of these is unfortunately just the complete Espec- 3.4 36 38 4
troscopic redshifts for all objects in the whole survey. T T T T T T T T T

g-r

117 model objects
with g-r=[0.95,1.05]
and z in 3.66+/-0.30

z = 3662
In this section, we try to understand these factors using ide 10 - +/- 0115 |
alised descriptions of a model and illustrate them with gxas L 0,= 0.024

from our data set. We hence investigate factors affectieddbal L i
properties of photo-z's in small regions of colour space.

I | e

3.6 3.8 4
z

5.1 Local RMSerror support from intrinsic diversity

We assume an 'dea“_seq_snuatlon for. an_ an_alytlc approachba Figure 6. Example for the local rms error support from model diversiky
sence of global ambiguities, and a distribution of model dath z & 3.7 the main redshift information is in the— r colour; at fixed colour,

following two simple rules in a local environment of coloyage: model redshift scatter is the same asdhems error in data sample.

1. The mean coloufc(z)) of objects at redshift drifts linearly

(© 0000 RAS, MNRASD00, 000-000
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Figure 7. Variations in theN (z) of the model (i.e. the priors, centre left panel) cause a loiea of z;1,,¢ in samples selected bypec (centre right panel)
but no bias of:spec in samples selected by, Or colour (right panel). See text for more details.

with z as{c(z)) = co + B(z — 20); this applies to both model
and data since there is no miscalibration between them.

2. Ateveryz there is a Gaussian distribution in the intrinsic error-
free model colourg(z) with an rmso. moder independent of.
The errors in the data colours are denotedbyata-

We can then infer for the model that at fixed coleuhere is a
Gaussian distribution ia with an rms ofo . model = Tc¢,model/ G,
becauselz/dc = 1/3. An infinitely accurate colour measurement
c in the data will be attributed a PDF with a mean redshift estém
(2(c)) = z0 + (¢ — c0)/B and an rms 0b  model, Which is equal
to the rms of the true redshift errors found in a data sample.

When a colour error in the data is introduced, the redshift wi
become less well constrained. Data points of objects at fixeitl
then appear with an effective observed colour scatteffg;f =
02 data + Tc.moder. The mean redshift estimate will be unchanged
but the rms of the PDF will widen to

2
2 _ Uc,data

52

Obviously, as long as¢,data < 0¢,model the intrinsic variety
in the model supports a lower bound in the redshift error. [Atter
will only increase substantially due to noise in the datamviés
larger than the model variety.

We now illustrate this point with a concrete example from our
data set, and go through the numbers explicitly. We choogish
with a colour ofg — r ~ 1 that are mostly high-z objects scattered
aroundz = 3.66. Their main redshift information is in the — r
colour index, which brackets the continuum step over the diym
a line due to the intergalactic Lyman-forest absorption, levtie
other colours provide only weak constraints. We plot the r
colour of objects near this redshift in Fid. 6 and find a nelinkyar
colour-redshift relation.

From the data sample, we select objects in a narrow colour
interval of g — r = 1.00 4+ 0.05 combined with a redshift in-
terval of |z — 3.66] < 0.3 to exclude rare outlying objects and
find 110 unambiguously estimated objects. We find their riétdsh
errors to have @z rms of 0.024 and compare this now to the in-
trinsic redshift scatter found in the model. From the mode& se-
lect 117 objects using the same colour and redshift inteavad
expect them to determine the main mode in the PDF of the se-
lected data objects. We find the redshift distribution in tinedel
to have a mean of 3.662 and an rms of 0.115, which transla@s in
o, = 0.115/(1 + 3.662) = 0.024. The data sample thus shows
precisely the errors expected from the redshift scattegritit to
the model in the relevant location of colour space.

(6)

2
+ Uz,modcl .

Ug,cff = (Uc,eﬁ/ﬁ)

~
~

In this example, the photometric noise is too small to con-
tribute to the PDF and error sources. All objects in the dateeh
g—r colour errors belovd™04. We fit a local slope for the redshift-
colour relation neae ~ 3.7 and finddz/d(g — r) ~ 0.73. The
propagation of photometric errors alone is thus expectetbin
tribute only ajz rms of

dz Og—r
dlg—r)1+=z

=0.73 x 0.04/(1 + 3.66) ~ 0.006 . 7

If the data included fainter objects with larger photoneetri
errors, then the colour range of model objects contributinthe
PDF would broaden and redshift errors would eventually besdr
by the photometric errors: an object wigh— » = 1, e.g., needs
og—r > 0.15 (i.e. larger than intrinsic scatter) for this to happen.

5.2 Local redshift biases

We continue to use the simple approximation from the previou
section and introduce a trend df(z) in the model sample which
will act as a prior; we assume a locally constant gradigvif dz in

an environment ofo with a normalisation ofV(zo) = 1. A brief
calculation including this extension shows that the résgPDF is
skewed by the non-flat prior, the redshift estimate is bias®tithe
estimated error shrinks. The expectation value moves by

AN (02 4ata dN
(zeft) — 20 = ar (% + Ug,modcl) = Egg,cﬁ (8)
whereo o« is given by Eqn[1B, and the formal rms is now
dN\?
<o—§,eff¢biased> - Ug,eﬁ - (E) Ug,eff . (9)

We illustrate this point with an example from a region where
N(z) changes strongly with in the model: Figll7 shows a region
nearz =~ 3 with a nearly linear colour-redshift relation (left panel)
whereN (z) changes by a factor ef 2 in the space oAz < 0.2,
equivalent talN/dz ~ +5 (or ~ 20 if expressed on a/(1 + 2)
scale, see centre left panel). Ak 2.9 a positive gradient leads to
an overestimation of,no¢ and atz ~ 3.3 a negative one leads to an
underestimation (see centre right panel). According to. Bymve
expect average biases da of £0.02 at these two redshift points
(giveno, ~ 0.03), which is roughly what we find in the data: at
z = 2.940.05 the bias igdz) = +0.016 and atz = 3.3 +£0.05 it
is (§z) = —0.018 (the use of & /(1 + z)-scale vs. a-scale may
be confusing; all quantities need to be on the same scale).

(© 0000 RAS, MNRASD00, 000—-000
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108 new outliers in box
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Figure 8. Sparse models are less sensitive to ambigligft: A quarter of all detected ambiguous objects using the fullleh@re classed as unambiguous
when the model is stripped to only 1 in every 64 objects, andynwd those are then outlier€entre: The colours for 108 outliersznoe < 1, but true

z = [1.4,1.9], see box in left panel) are plotted (black) on top of the pluheolours of the full model at = [1.4,1.9]. Right: The sparse model does not
have much overlap with the 40 objects and suggests a neapeaability for them to be at > 1.4; their ambiguity is not detected any more.

Finally, we want to emphasise that such a bias is indeed not sonian fashion by increasing the size of the data samplénstead

particularly relevant for most photo-z applications asihot ob-
served, wherbz is plotted overzphot instead Ofzspec (see right
panel of Fig[¥). By design, the application of priors progsithe
correctN (zspec) for slices inzpnot- Or colour space, although the
reverse is not true as exemplified above.

5.3 Local undetected ambiguities

The origin of outliers not flagged as ambiguous is a deficiafcy
the model. We try to give an order-of-magnitude estimateis
residual outlier risks. If we use the largest available nhadenple,
these estimates quantify a maximum risk, which could onlgdre
strained further with the help from a hypothetical largenpke. If
we choose a smaller model sample for the photo-z's on purpose
then we can still derive better estimates of the expectdicouite
from the larger one.

For a given object in the data with colourand erroro., the
PDF is mostly defined by the part of the model samples that re-
sides with the central@contours of its error ellipsoid. In order

only by increasing the model sample.

However, the outlier risk can be reduced by stacking the PDFs
of several objects across a wider interval of colour spate @
summed redshift distribution(z), because the number of objects
in the model contributing to all these PDFs together inasas
this case Nmodel, local COUNtS all objects in the area of colour space
used for stacking. Of course, as we reduce the Poissonidierout
risk and make the PDF more reliable, we also reduce the fédshi
resolution as we integrate over a wider range of colour spafee
are then choosing trade-offs between resolution and iktjab

In Fig.[8 we illustrate the effect by comparing photo-z's ob-
tained using a large model set with those obtained using a&mod
set of only 1/64th the size, which has been created from tige la
one by sparse but random sub-sampling. Looking at the wiadée d
sample, we find that- 1/3 of the flagged ambiguous objects are
not flagged as ambiguous any more when the sparse model is used
The left panel in Figl18 shows just these 5502 newly unambigu-
ous objects. The majority of them has still good photo-znestes
as indicated by their location near the diagonal, but ab&e bf
them have become outliers as a result of overlooking theligun

to get any moderately reliable PDF, the model sample needs tojty when using the sparse model.

have at least some objects in this area; a faint ambigugtyaisec-
ondary branch with much lower object density in the sameoregi
of colour space, is detected only if there is at least onecblsjgen
from that branch. Furthermore, if we observe zero objectssec-
ondary population, but assume a-priori thasipresent with a flat
prior on a density above zero, the expectation value fordtsiy

is (N) = 1 objects from Poissonian statistics. Thus, simply assum-
ing a model WithNmode1,10ca1 Objects in the central part of an error
ellipsoid, the residual risk for an undetected faint amtigis

1

Nmodcl,local

P2nd = (10)

This is the maximum oulier risk attached to any single object
in this location of the data space. The risks-per-objecto(aput

We now focus onto an area containing 108 slu@4-outliers
in the range ofz = [1.4,1.9] and z,not,1/64 < 1 (S€€ boOX in
left panel). The obvious interpretation is that in the colepace
occupied by those 108 Z1.4)-objects, the model is dominated
by objects ofz < 1, although there is a secondary branch at
z = [1.4,1.9] that is visible only in the full model and diluted
into discrete absence in the 1/64-model. Supporting thespne-
tation, we compare the colours of the 1/64-outliers (blagkh
the plume of model colours across the range ef [1.4,1.9]. In
the centre panel, the full model is seen to cover the 1/6Heosit
hence their PDFs contain a mode withir= [1.4, 1.9], and ambi-
guity is detected. But in the right panel, the sparse modstés to
mostly avoid the objects, which eliminates this mode in tBé-®
and makes them outliers. Given the small colour errors irdtta

by the code) add up whenever defining larger data samples froma colour mismatch of> 01 is already sufficient to suppress the

different regions of colour space; they can not be reducdebis-

(© 0000 RAS, MNRASD00, 000-000
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5.4 Sizeand incompletenessin model sample; propagation
into outliersand redshift bias

From the arguments in the previous section it is clear trasihe
and any incompleteness of the model affects the residutieout
risk. We need to distinguish between two kinds of incompless,
one from variations in targetting objects for spectroscepyl one
from variations in recovering redshifts from target spactr

e Incompleteness in targetting means that relatively felvet,
randomly selected objects in a particular part of colourcepare
included into the model sample. Thus, the priors are notiaitlyl
correct anymore, but this can be compensated by applyinicexp
weights to the objects.

e Incompleteness in successfully recovering redshifts ftioen
spectra of target objects is likely to act non-randomly idsteft.
It is usually a result of a spectrograph reaching differesitt at
different redshifts for different galaxy types, due to ations in
the strength of spectral features and in their visibilitghin the
instrumental wavelength range. This will omit an importaatt
of the model sample and wipe out its corresponding repratent

in the PDFs. We point out, that the incompleteness of the RDF i
not reduced by simply enlarging the model set, but only by-mak

ing it more complete in the redshift recovery rate. Alsohié in-
completeness affects parts of redshift space strongly egtiolg
redshift deserts, it will translate directly into a simifaaction of
undetectable outliers.

The oulier risk translates into a redshift bias risk wherrage
ing the mean redshift of a subsample containing the outligrshe
bright end, undetected outliers are more likely due to spaasn-
pling of the colour space as a random model sample will contai
few bright objects in line with their natural scarcity. Atettiaint
end, they are more likely the result of instrumentally dnieelec-
tive redshift incompleteness and can reach dramaticaljly hates
(see_Newman 2008, and references therein). Also, the ras siz
data sample and model sample translate into simple Poissest
timates of the expected errors on the mean redshifts.

The Poissonian error on the mean redshift of a subsample lo-

calised in colour space is limited by the error on the meashiéd
of the stacked PDF, i.e. the number of model objects and tb#hwi
of their redshift distribution, as well as by the data sampleose
realisation may deviate according to its size:

1 1
O0(z)y = 0z,PDF X + .
{ Nmodcl,local Ndata,local

The propagation of the maximum outlier risk into a maximum
bias risk also rests on assumptions of their redshift thistion. The
mean redshift error of outlying objectz..:) in a local region of
colour space may be anywhere betweeh+ 1/(1 4 zmax) and
+Zmax. The maximum bias risk is then:

(11)

|<6Z>| = |<5Zout>| X (nnonrecov + (12)

1
)
Nmodel,local

wherennon—recov 1S the incompleteness of the spectroscopic

redshift recovery, and the second factor quantifies theitsgtys
limit to ambiguities. If we approximate example numbersmg

ing |[(dzout)| = 1, then a 20% spectroscopic incompleteness im-

plies a maximum redshift bias risk ¢féz)| = 0.2, far above any

of thedz rms values seen in our work. This is a maximum risk, and

better constraints require a better model sample.
This implies that spectroscopic incompleteness deserves by
far the greatest concern in empirical redshift estimation work. This

isnot much of anissue for any of the bright SDSS samples, but very
important for any empirical photo-z work in magnitude regimes
where spectrographs do not provide near-100% compl eteness.

These are rough estimates for overall samples, but again our
code produces risk estimates per object, which allow ektiom of
uncertain objects from samples entering follow-up analy€&ur
method is to put all spectroscopic target objects from theleho
sample without a reliably recovered redshift into a sepanmaddel
and evaluate the fraction of the total PDF they account faaich
individual object; this share of probability is attributduectly to a
residual outlier risk for the object in question.

5.5 Arethereideal sizesfor model samples?

We quantify the ideal size for a completg,{n—recov = 0) model
sample, while for incomplete models the conclusion depemd o
the selections being made for the follow-up analysis. Weirass
that a data sample will be partitioned into subsamples witbked
PDFs, or each object will be considered on an individual $asi
(Ndata,local = 1); in either case, the critical factor is the size of
the model in the local region of the subsample or the ind&idu
error ellipsoid, and our rms tolerance on the mean redshife
following applies if mean redshift of a sample is the critifigure
(as e.g. in gravitational lensing) while some applicati(gsch as
BAO measurements) may not depend so much on outliers.

The potential rms error is given by Poissonian precision and
residual outlier risks, and these change with differentgravef the
size of the local model sample (Edn] 11 dnd 12). The two error
sources have similar impact if

Nmodcl,local - 1/U§,PDF ) (13)
and their combined error estimate is
U(z) =V 2/-Z\]modcl,local . (14)

If the model has fewer objects than this, the mean redshift of
data subsamples is limited by outlier risks that dectiné/N, and
if it has more it will be limited by redshift scatter that contes

to declinex 1/+/N. If the balance is not ideal in a given model

sample and enlarging is not an option, there is the altexmati
changing redshift resolution and making subsamples caffer-d
ent ranges of redshift space. As long as the local colowhiéd
relation is vaguely linear, this would change model sizenwfite

width of the redshift rangeVimodel,local ¢ 0=, pDF; this changes

outlier risks in the opposite direction to Poissonian sieci and
can be used to rebalance the error sources to an optimal mix.

If we take model incompleteness into consideration, it dom-
inates the error sources as sO0Mash—recov > 1/Nmodel,local-
Median redshifts, in contrast, are only weakly affected biliers.

6 USING MODEL ERRORSIN THE x* ERROR SCALE
OR SMOOTHING FUNCTION

In the previous sections we used a model sample that is almost
noise-free in conjunction with &> approach, which is only per-

fectly reliable when the model is exactly free of noise. Weakied
that the error estimates showed deviations from the trueemas

in Fig.[d that we still want to explain. Also, future applicats will
rely heavily on redshifts of faint objects with noisy photemy. In

this section we clarify the the role of noise for the choicéhafy -

error scale and its consequencese) estimates, and take into
account the requirement for smoothing as well.

(© 0000 RAS, MNRASD00, 000—-000
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Assuming that we use a model with full completeness, the 6.2 Spatially varying target smoothing scales
data sample and the model sample are drawn from the same par-H di v th i f tiall . ih
ent distributiong(z, c) of objects in colour space. Noise, however, ere, we discuss only the option of spatially varying smow
smoothes these distributions into a new density functibic), scales that are identical for the data and model §amplle frem t
and may differ between the data and model samflboth sam- StQa ft. Thus,.the error scalgs are already mat.ChEdIJ"e; 0in the
ples are smoothed to the same degree, thiifc) are identical. X" -expression, hence typ!cally no model object V\.IOUI.d be fgannd
Then the photo-z PDF of any individual data object at locatias the locatiorc; of a data O.bje.Ct.' Agam,.the only option 1S to.glve up
simply given byp(z|c:) as determined from the model. Otherwise, on p(z)-expressions for individual objects, and to define instead a

we apply an operation to make the smoothing scales consis volume in colour space, over which data o_bjgcts are comhbimted
could also choose to smooth both data and model to a common® subsample that has th€z) of the model within the same volume
larger scale attributed. However, not having(z) for individual objects means

f we were prepared to give up the concept of & POF for an %1% SRR I ETEREI BRI | it
individual object, we could define regions in colour space at Y 9 P y varying

tribute the integrated model properties in the region todhee- between data and model sample, will face the problem of fqdin

sponding subsample of data objects distributed over tigimeln the target scale for_ an object in dependence of its or_lgomitlon
; . . before the smoothing due to the present errors. This canlmnly
the following, we differentiate two cases, that of a constarget

smoothing scale, and that of one which varies across cofages done as a flrst-o_rder approximation using a repre_sentaﬁdpheo
error scales that is already smoothed by the errors itself.

6.1 Spatially homogeneous target smoothing scales 6.3 Error propagation through the y?-expression and the

. . . . ideal smoothing scale
A spatially homogeneous target smoothing scale is striaigiard

to deal with, as any object from the data or model sample needsWe continue to use the idealised example of a locally linga)-
to be smoothed further by an amount that is trivially deteedi relation from Sect. 5.1, only that the model is now consideie
Every pair of data-model points can be compared separately: have a measurement error as well. Thus at fixed redshift, tieeim
has a Gaussian scattef ..o qe1 = 02 model_int + T2 model_err thal
1. Ifthe errors of the model object are smaller than the dataie  results from intrinsic scatter convolved with measureneerurs.

Tmodel < Odata, WE Need to smooth the model object further by A data sample at true redshifthas a colour scatter, qat, =

2 2 2 o i i i ;
0} = Odata ~ Tmodel- THIS is most easily achieved by replacing - 52 . 452 thatresults from the same intrinsic scat-
the model object with a Gaussian of widthand evaluatingitat  ter put convolved with the data measurement errors. It lates

the location of the data object. We can thus simply use the- into a corresponding rms scattey., in the redshift expectation
framework described before and usgas the error or smooth-  yajyes given the local slope of théz)-relation:

ing scale. Note, that this smoothing scale is obtainedtly
tracting the model error from the data error. In contrasigiing

2
these errors into the smoothing scale smoothes the model ©0007,) = (02 model—int + O data—error) X (%) . (15)
much compared to the data. In the case of an error-free model ¢
we recover the usuad2 error scaler; = odata- This result does not depend on the choice of¢herror scale.

2. If the errors are nearly identical, then the smoothindescare Only the width of the PDF, and hence the redshift error edtmg,
already matched. We find the smoothing seale— 0 and the depends on thg? error scale, as it is a convolution of the model
number of model object®&’ — 0 contributing to the solution scatter and the model smoothing scaje
with diverging Poisson errors. Discretisation effectsatarcall
for a sufficient smoothing scale driven by the density of f®in ) , 5 ) dz 2
in the model. We can choose a larger target smoothing scale fo 7= = (Uc,modelfint + 0c,model—error 1 Uj) X (%) . (16)
both, or we definep(z) only for subsamples distributed over
a region in colour space. Thus, holding on to non-zero model
smoothing requires to smooth data points as well. This nigt on
wipes out previously present information, but needs to lve ca
ried out rigourously (as in 3.) to obtain an unbiased PDF.

3. If the model error is larger than data erréfoder > Gdata, 0] = Ol dataer — s model_error (17)
we need to smooth the data object, which we implement by
resampling the data object as a Gaussian. Model smoothing is
still desired for numerical reasons, and a common targéé sca
for data and model needs to be chosen that is larger tham eithe
one. Data smoothing is done by resampling as a Gaué&&iey)

With Width 07,camp = Ttarget — Taata &t Manye; j, and model
smoothing as before by evaluating a model Gaussian af; the
asin (1.), whereby? = 07, et — Tmodel-

Requiring that the PDF and error estimates are represantati
of the true rms redshift errors, we ask that, = o., which is
fulfilled as in Sect. 6.1 when using

for a matched error scale. This implies again that the model
objects have smaller errors than the data objects, so thadeh
mands of a non-zero smoothing scale to overcome disciietisat
effects and of the correct error scale can be met simultahgou
The photometry of the query data set only needs to be as good as
the lower limit provided by a desired smoothing scale defivem
the density of the model points. Otherwise, we have to uptiwd
desired smoothing scale by introducing additional colowd eed-

Having p(z) for individual data objects conserves resolution shift scatter into the data by resampling the data objecaslaoger
in the data sample that is lost when a commpog) is attributed to matched error scale. This means that the photometry of aginat

subsamplesBut it requires that either data errors are larger than guery data set was too good to be useful. Conversely, theédéve
model errors from the start, or noise be introduced into the data data errors drives the necessary density of model pointgoress
after observation, due to a discrete model asking for smoaothing! outlier risks as discussed in Sect. 5.

(© 0000 RAS, MNRASD00, 000-000
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Figure 10. Photo-z quality (as in Fig. 1) using noisy data, noisy model a
the matched error approach: The error estimateare now comparable to

We point out the consequence of adding model and data errorsthe true rms redshift scatter. Larger noise leads to fewamiiiguous PDFs

in the x> error scale: USiNG; = 07 qaia e + o model —crrs WE
expect to overestimate the true errors by a factor of

Oz c,model—error

202
= 1+ )
g .
c,model—int

A brief numerical experiment is conducted to verify these-co
siderations: we scatter all our data objects to reach a new ef
071414 in every colour index, and all our model objects to reach
now 0™ 1. Following Eqn[Ib we expect the matched error scale to
produce an rméz error similar to(o - ), the mean width of the PDF,
while the added error scale should enlatge) by a degree that de-
pends on the intrinsic model scatter and in our case may ngach
to a factor ofy/2 where the intrinsic scatter vanishes.

We investigate first the high-z regime, where colour and red-
shift follow a simple relation. Looking at all objects with > 3
but excluding statistical outliers witfyz| > 0.1 or . > 0.1,
we measure the mean width of the PDF and the émerror. In
Sect. 5.1 we measured an intrinsic scatter in the model colofu
Oc,model—int =~ 0.15 in this redshift regime, which predicts an in-
crease inr,, by a factor of~ 1.2 using Eqn[_IB.

The matched error scale produces an rms0©R91 and
(02) = 0.0291 in perfect agreement. With the added error scale
the rms remains almost unchanged 8279 but the error estimate
is increased by afactor ef 1.25t0 (0.) = 0.0366. We take this as
empirical evidence that the added error scale overestineters
in line with the analytic expectations from the idealisedreple.

(18)

2
U<Z> + Uc,dataferror

(completeness). However, bias and outliers remain broeaslxpected.

The conclusion is that the matched error scale approach is
an appropriate way to obtain estimates of the redshiftidigion
which are virtually correct within Poisson noise.

We also repeat in Fif._10 overall photo-z performance figures
for the noisy experiment using the matched error scale inythe
We find now that the rmsz errors follow roughly the error esti-
mateso . in the differential sample line, in contrast to the version i
Sect. 4 that ignored the model errors. Bias and outlier rat@sin
as low as before, but the completeness, i.e. the fractiomaiid
biguous PDFs, has dropped due to the larger errors and simgoth
We revisit the low-noise case in the following section.

6.4 Revisitingthelow-error case

Armed with the understanding of the impact of smoothing eal
onto estimated errors, we reconsider the results of Sdgtwhere
we decided to use the canoniggt-approach while ignoring the
model errors. Since the low-noise data were unaltered amd ra
domly splitinto data and model sample, the two were on a commo
matched error scale to start with. The application of smiagtio
the model only has caused an overestimation of the redshiitse
(see Fig. 1), which can now be explained. Given equal ernots a
our choice of scal&data = Tmodel = 0, WE €Xpect to have over-
estimated errors by up t@2; an added error scale could even have
led to a factor of up ta/3, all depending on the relative degree of

As aresult the stacked PDF from the entire data sample could intrinsic scatter. The alternative of no smoothing sugegsty the

be wrong near structures in(z) or edges. In Fid:]9 we compare
them to the spectroscopic redshift distribution for bottoescales.
The histogram plots (top row) make it difficult to spot the dma
differences, but in the bottom row we show the differencevieen
the redshift histograms scaled by the expected Poissoa imésch
redshift bin, which isr3, = N3, +N2q. for the difference. The
matched error scale shows no apparent bias and an rms safatter
1.08 that is very close to Poissoniaga (1). All bins with 10 or less
objects (at the tails of the redshift range) have been editeihfor
this plot. In contrast, the added error scale shows drittiages and
an rms scatter roughly enlarged bi2.

error scales was of course ruled out by the discretisati@etst

We note, thatl Oyaizu etall (2008b) estimated errors by
smoothing their model with a top-hat kernel function, of =
with the motivation to collect enough model objects for a djoo
definition of the PDF. However, they do not find an increase in
redshift errors as we do here, and we speculate that this eay r
sult from photometric errors being much smaller than therigic
colour scatter and the density of their galaxy model sampiedh
extremely high, so that moderate smoothing would introchrdg
little non-locality and have a very small effect.

Just to prove how the incompatibility of smoothing scales

(© 0000 RAS, MNRASD00, 000—-000
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Figure 11. Photo-z quality (compare with differential lines in Fig. fby
low-noise data using different smoothing scalight: The error estimates
o, are nearly identical to the true rms redshift scatter whengueear-
zero smoothing as suggested by the matched error scaleerlsargothing

Bayesian photo-Z swith empirical training 13
posed by strong variations in interstellar foreground ghisan as
well. Since object features need to be de-reddened, thiesiar
depth of the data set changes with the absorption level. dseth
cases, a data set and its model sample may need to be brokan dow
into more homogeneous parts to allow for optimum treatment.

7 CONCLUSIONS

We have presented a method to obtain Bayesian photomet¥ic re
shifts using the 2-technique with empirical models. This approach
is intended to combine in one framework the two complemgntar
benefits ofy>-template fitting and of empirical training sets as used

overestimates ... Left: Smaller smoothing scales lead to larger noise inthe e.g. by neural networks. The advantageydtmethods is that a

PDF and thus higher outlier risks-(10% for o; = 0™01).

propagates into inappropriate error estimates for the rioige

probability density function is created, which can be irt$pé for
ambiguities arising from multiple peaks. The advantagengbie-
cal samples is that they can be made to match perfectly the- dis
bution and calibration appropriate for the data sample ppesed

SDSS QSO data used here, we rerun the experiment from Skct. 4. templates that rely on negotiable assumptions. PDFs gk

with two fixed scales of; = 0701, close to the desired zero scale
ando; = 0710, larger than the typicatqasa levels of0:"04. The
results are shown in FigJl1 and compared to the originalivers

usingodata. It is very clear that the near-zero smoothing produces

an excellent correspondence betweendhems and the error es-

timateo, (right panel). Larger smoothing scales shift the curve to

the right towards progressively overestimated errors.

However, the left panel demonstrates the expected downside

of near-zero smoothing, which is a large10%) fraction of out-
liers. These appear together with an increased fractiorbjefcts
classed to have an unambiguous PDF. A shrinking smoothimg fu
tion draws its PDF from fewer model objects, overlooks maoue t
ambiguities (see Eqf.JL0) and produces more residual mutlie
contrast, the large smoothing scaleddfl pushed outlier rates be-
low 1%, even to 0.1% in parts of the plot.

6.5 A practical requirement: a constant data error scale

The results above create a desire for two perhaps confliding
mands:(i) we want to derive PDFs for individual objects using the
matched error scale, which requires a spatially homogentaou
get smoothing scalgii) We want to keep smoothing scales on the
order of the data errors in order to use the signal containebe
data rather than destroying it with further smoothing. Hesveif
some parts of the data are much noisier than others, theylrvié
the requirements for the target smoothing scale. Hencedealy
want to have a constant error across our data sample.

with imperfect templates can still be unreliable, and where-
plate errors are taken into account in th they widen the PDF
and increase the error estimates.

Our method produces reliable statistically correct PDFs if
complete empirical model is available. For incomplete ni®de
are able to quantify the mis-estimation risks associatet wach
individual object. A very simplified description of the coarjson
could be: Conventional NNs are accurate but unreliable anthi-
guities;y>-template fitting is less accurate, but guards itself agains
unreliability with PDFs and template errors; the ngfempirical
method is both accurate and reliable.

We used a data set full of ambiguities to demonstrate that the
method delivers its promises, i.e. the SDSS DR5 QSO samftte wi
~ 75,000 objects, split half and half into a data and a model sam-
ple. Objects with unambiguous PDFs show less than 1% asitlier
typical redshift errorsc 0.05 and vanishing redshift bias. At higher
redshift ¢ > 2.5) these figures are a factor ef 2 better. The
outliers purely result from the limited size of the model gden
while the rms errors are dominated by the instrinsic vané®SO
colours given the information content in the survey data.

Objects with PDFs classed as ambiguous correctly evaluate
the relative probability of the two possible solutions. §provides
either accurate weighting factors when using both integpiens
for an object in a later analysis, or an accurate outlierwibkn us-
ing only the more probable solution. In the latter case, oethod
predicted that in 78.0% of ambiguous objects the more pilebab
peak in the PDF would be the correct one, which was then fooind t

If we are concerned only with bright objects, these may have be true for 77.9% of them, different by less than Poissonenois

small errors that may even be dominated by calibration naige
thus be approximately constant on a magnitude scale. Orotie ¢
trary, when we are concerned with faint objects and divergiag-
nitude errors, a flux scale is more useful. The errors of falifects
are essentially background noise and constant on a flux $2ale
objects that are brighter than the background have theirefltors
growing due to their own Poisson noise or calibration ndfgaese
are to be treated at the same time as faint objects, a tramsfiditux
scale could be introduced, which maps the mean error as &danc
of flux onto a constant function. The above procedures cdd t
be exercised using transformed fluxes as object features.

The method had been inspired by the template-based photo-z
code employed in the CADIS and COMBO-17 surveys (Wolf et al.
1999, 2001), except that it replaces template realisatore grid
with empirical model objects. It is thus also capable of sifging
objects with Bayesian probabilities into stars, galaxieSOs and
into various subclasses.

For noisy data we proposenaatched error approach, which
is designed to compare data and model at common resolution
in colour space. This translates intoy&-error scale given by
02 in — 02040, @and we show that this method provides accurate
error estimates. In contrast, adding data and model emotkei

A problem remains even for transformed fluxes, when a large x2-expression broadens the probability distribution anc twer-

data set includes strong variations in observed depth,ea&léal
flux transformation function changes with depth. This dvadle is

(© 0000 RAS, MNRASD00, 000-000

estimates the rms redshift errors. Finally, we show thatthtehed
error scale in the2-empirical method reconstructs the redshift dis-
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tribution of a noisy data sample practically within Poisisorn(z)-
errors, if a complete albeit noisy empirical model is avaida

The method is most easily implemented when object features

can be transformed onto a scale where data errors are cbasthn
model errors are smaller than data errors. Then the modedtbmo
ing is provided by matching the error scales in fffeexpression
and no data resampling is required. In this case, the proegdu
computationally very fast; e.g. the QSO sample in this wodsw
processed in 20 minutes on a year 2004 PowerPC Mac laptop.
Empirical models are more representative of the data, argd th

the derived PDFs are substantially more accurate than PBFs d

rived from template fitting, allowing to trust redshifts, biguities
and outlier risk evaluations, which is critical for undersding sys-
tematics in large photo-z data sets. However, their linatest arise
principally from the size and completeness of the model $amp
Redshift-selective incompleteness as it often appearseafatnt
end of spectroscopic surveys translates into a massivdeagtdble
outlier risk that can far exceed any of the other performdime
itations. While such incompleteness is the main challeogary
empirical method, we provide a framework to evaluate ceipbic
risks for individual objects as to allow for their separatadling.

An important application of future photo-z work is in mas-
sive cosmological surveys for galaxy photo-z's, which witleed
require superb control of systematics such as redshifebiasd
outliers. The results presented here for QSOs are not abjdico

galaxies in a quantitative sense, but our use of QSOs was moti

vated by the rich ambiguities present, which for galaxiesarly

expected in future large samples. When they become awilabl

they will benefit just as well from our method that derivesustb
Bayesian photo-z’s from empirical samples and evaluatgdual
risks for outlier rates and photo-z biases.
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